
Automatic Fuzz Drivers for JavaScript with Type
Distributions

Mayant Mukul
University of British Columbia

I. MOTIVATION

Testing libraries with modern fuzzers conventionally in-
volves writing an entry point into the library, called the
fuzz driver, which invokes library functions (endpoints) in
a sequence that meaningfully exercises the library. Manually
writing and maintaining effective fuzz drivers is tedious and
requires expert knowledge of the library. Existing automatic
library fuzzing techniques do not generalize to languages like
JavaScript, the most popular programming language among
professional developers [1].

II. BACKGROUND

Prior works like FUDGE [2], FuzzGen [3] and Graph-
Fuzz [4] assume compile-time type checks and invoke
endpoints with strict predefined argument types. However,
JavaScript allows invoking functions with arbitrary argu-
ments [5], so developers write additional code to validate
input types at run-time. To test if a library is robust to
unexpected input, a JavaScript fuzzer should invoke endpoints
with arguments of unexpected type.

We believe GraphFuzz provides the cleanest presentation
of the problem. It encodes fuzz drivers for C++ libraries as
directed acyclic graphs – nodes represent endpoint invocations
and edges represent data-flow that respects argument types.
GraphFuzz generates graphs through mutations that preserve
type compatibility between nodes. We relax these mutations
by considering likely signatures for endpoints instead of strict
function signatures.

III. APPROACH

We introduce the notion of type distributions to compactly
express likely function signatures (Figure 1a). Instead of a
distribution over a flat set of types, we save conditional
probabilities discriminated on the kind of type (primitive
or complex) with additional metadata for complex types.
These distributions can be hand-tuned or inferred using type
inference approaches like Guess What [6].

The input to our tool is a list the endpoints and their
type distributions. Mutations use type distributions to pick
new endpoints (Figure 1). An interpreter receives graphs and
executes them, providing coverage feedback to the fuzzer.

IV. RESULTS

We re-implement GraphFuzz for JavaScript with our exten-
sions and evaluate on 5 libraries with handwritten fuzz drivers
maintained as part of OSS-Fuzz [7]. We found two bugs in

our benchmarks. First is a bug where a combination of an
unexpected input type and a particular configuration option
causes a stack overflow. The handwritten driver uses default
options and does not exercise this branch while TypeScript
annotations use any and allow the unsupported type. Second
is a bug where the dynamic type of a returned value deviates
from its declared TypeScript type when a function is called
with an empty Uint8Array. The handwritten fuzz driver for
this library does not test empty inputs. These bugs highlight
the difficulty of writing and maintaining fuzz drivers that
thoroughly exercise the library by hand.

V. CONCLUSION

In this work we propose loosely typed fuzzing for JavaScript
libraries and demonstrate the utility of generating diverse
fuzz drivers. Future work will explore further improving
code coverage, automatic inference for type distributions, and
other program representations that can express control-flow
constructs.

REFERENCES

[1] (2024) Stack overflow developer survey. [Online]. Avail-
able: https://survey.stackoverflow.co/2024/technology#1-programming-
scripting-and-markup-languages

[2] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux,
L. Szekeres, and W. Wang, “Fudge: fuzz driver generation at scale,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 975–985.

[3] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “{FuzzGen}: Auto-
matic fuzzer generation,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 2271–2287.

[4] H. Green and T. Avgerinos, “Graphfuzz: Library api fuzzing with
lifetime-aware dataflow graphs,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1070–1081.

[5] (2024) Ecmascript language specification. [Online]. Avail-
able: https://262.ecma-international.org/#sec-ecmascript-function-objects-
call-thisargument-argumentslist

[6] D. Stallenberg, M. Olsthoorn, and A. Panichella, “Guess what: Test case
generation for javascript with unsupervised probabilistic type inference,”
in International Symposium on Search Based Software Engineering.
Springer, 2022, pp. 67–82.

[7] K. Serebryany, “{OSS-Fuzz}-google’s continuous fuzzing service for
open source software,” 2017.



"arguments": [{
"kind": { "string": 0.5, "class": 0.5 },
"constructorIfClass": { "Uint8Array": 1.0 }

}],
"return": {

"kind": { "string": 0.5, "class": 0.5 },
"constructorIfClass": { "Uint8Array": 1.0 }

}

(a) Type distribution for example functions zip and unzip that can receive and return string or Uint8Array with equal probabilities.

const input = /* string input from fuzzer */

const data = unzip(input)

(b) A simple fuzz driver

unzipinput

(c) Graph for fuzz driver in (b)

const input = /* string input from fuzzer */

const compressed = zip(input)

const data = unzip(compressed)

(d) Fuzz driver after mutation

zipinput unzip

(e) Graph for fuzz driver in (d)

Fig. 1: An example of a mutation that inserts a new node. It searches for an endpoint that is likely to receive and return a
string to insert between nodes input and unzip in (c). zip fits this constraint, and the result is a new graph (e) that
represents a new fuzz driver (d).


