
Automatic Fuzz Drivers for JavaScript with Type Distributions

Problem

Fuzzing libraries requires handwritten driver code which in-
vokes libary APIs with appropriate test inputs.

Writing effective drivers is difficult and there are large 
bounties for new ones.

Prior work on automatically generating drivers has focused 
on statically typed languages, despite JavaScript being an 
immensely popular language.

Why Is JavaScript Different?

Fuzz driver generation searches for interesting sequences of 
API calls and interesting inputs for them.

For statically-typed languages the search for inputs is con-
strained by types. This is not the case for JavaScript!

Learning Types

We represent likely API function signatures with type distribu-
tions, i.e., probability of a value being a certain type.

We learn probability weights for these distributions during 
fuzzing through distribution mutations and a validity oracle.

Developers often implement run-time input validation for public 
APIs. Instead of reporting validation errors (false positives), 
we use them as feedback for our search, in addition to code 
coverage.

if (is.string(input)) { ... }
else if (is.buffer(input)) {

if(input.length === 0) throw Error()
} else if (Array.isArray(input)) {

if (input.length > 1) {
if(this.options.joining) throw Error()

}
} else throw Error()

Code snippet from Sharp, a JavaScript image manipulation library. 
Sharp accepts inputs of multiple types and performs extensive run-time 

validation.

Early Results

We are evaluating our technique on popular open-source li-
braries fuzzed as part of the OSS-Fuzz project.

We have already found 2 bugs in code paths unreachable by 
current handwritten fuzz drivers in OSS-Fuzz.

We are also evaluating how well it fills the gap left by other 
testing tools.

Main fuzzing loop. Fuzz drivers are encoded as dataflow graphs 
and associated with schemas. A schema is a list of likely function 
signatures for the target library. Executions are considered novel if 
they uncover a new code path or a path previously only covered by 

invalid inputs. Input selection from corpus prefers valid inputs.

What about...?

Search-based unit test generation
Prior work requires static analysis of fast evolving 
JavaScript syntax

TypeScript
Unsound, especially when types and implementation are 
distributed separately

LLMs
Prior work involves manual specification and labelling of 
false positives

35 Tu-F ACM SRC
icse2025src-p8

Mayant Mukul
University of British Columbia


