Automatic Fuzz Drivers for JavaScript with Type Distributions

|

Writing effective drivers is difficult and there are large ¢
bounties for new ones.

Prior work on automatically generating drivers has focused / []\’[
on statically typed languages, despite JavaScript being an)

Fuzzing libraries requires handwritten driver code which In-
vokes libary APIs with appropriate test inputs.

Immensely popular language. [

Why |s JavaScript Different? \‘L]

Fuzz driver generation searches for interesting sequences of N t| .
API calls and interesting inputs for them. utate

Gralolr\ G with Schema S

For statically-typed languages the search for inputs Is con-

l
strained by types. This Is not the case for JavaScript! /+[[
. ey
U

We represent likely API function signatures with type distribu-
tions, I.e., probability of a value being a certain type. |
Execute

Grapl« G' with Schema S'

We learn probabillity weights for these distributions during
fuzzing through distribution mutations and a validity oracle.

'

Developers often implement run-time input validation for public Yes—

APIs. Instead of reporting validation errors (false positives),

we use them as feedback for our search, in addition to code
No Yes
v No \

coverage.

if (is.string(input)) { ... } Report!
else if (is.buffer(input)) { res

if(input.length === 0) throw Error()
} else if (Array.isArray(input)) {

if (input.length > 1) { Main fuzzing loop. Fuzz drivers are encoded as dataflow graphs
and associated with schemas. A schema is a list of likely function
signatures for the target library. Executions are considered novel if

) they uncover a new code path or a path previously only covered by
} else throw Error() invalid inputs. Input selection from corpus prefers valid inputs.

if(this.options.joining) throw Error()

Code snippet from Sharp, a JavaScript image manipulation library.
Sharp accepts inputs of multiple types and performs extensive run-time

validation. What about...?

Early Results Seqrch-based uplt test _generatl.on |
Prior work requires static analysis of fast evolving

We are evaluating our technique on popular open-source li- Javascript syntax

braries fuzzed as part of the OSS-Fuzz project. TypeScript

We have already found 2 bugs in code paths unreachable by Unsound, especially when types and implementation are
current handwritten fuzz drivers in OSS-Fuzz. distributed separately

We are also evaluating how well it fills the gap left by other LLMs

testing tools. Prior work involves manual specification and labelling of

false positives

35 Tu-F ACM SRC| [t Mayant Mukul

icse2025src-p8 j i g University of British Columbia

